ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РЕКОМЕНДАЦИЙ ПО СНИЖЕНИЮ ПОТЕРЬ ЛЕСОЗАГОТОВИТЕЛЬНОГО ПРОИЗВОДСТВА

Е.В. Кондрашова, Т.В. Скворцова, С.В. Меркулов, Р.А. Гниломедов

ГОУ ВПО «Воронежская государственная лесотехническая академия; ГОУ ВПО «Воронежский государственный архитектурно-строительный университет», г. Воронеж

Ключевые слова и фразы: ремонт покрытия; экономический эффект; показатели безопасности движения, себестоимости перевозок, скорости движения, прочности дорожной одежды, эффективности ремонтных работ.

Аннотация: В статье предложены рекомендации, позволяющие снизить потери лесозаготовительного производства за счет экономии на транспортных операциях. Рассчитан экономический эффект внедрения предложений на примере дорог Краснодарского края.

Главными принципами лесоэксплуатации в настоящее время являются непрерывное и неистощительное пользование лесной продукцией. При этом важная роль принадлежит лесотранспорту и лесовозным автомобильным дорогам, которые служат связующим звеном структурных элементов лесопромышленного комплекса, в значительной мере определяют экономическую доступность лесоматериалов на участках лесного фонда и возможность эффективного лесопользования [1].

Хорошие дороги обеспечивают ритмичную работу всех звеньев лесозаготовительного производства. Это позволяет в максимальной степени использовать основные фонды и трудовые ресурсы, поднять уровень организации всего лесозаготовительного производства в целом. В результате себестоимость заготовки снижается на 20...80 % [2]. Низкое качество автомобильных дорог лесопромышленного комплекса снижает эффективность развития российской экономики и, как следствие, уменьшает конкурентоспособность российской продукции по отношению к зарубежной.

Окупаемость вложений в дорожное покрытие всецело зависит от протяженности дорог, приходящихся на одну очередь транспортного освоения лесного массива. Неудовлетворительное состояние ряда участков дорог приводит к значительному снижению скорости движения транспортного потока, повышению аварийности на дороге. В результате лесозаготовительное производство получает экономический эффект в размере наносимого ущерба из-за сложных дорожных условий.

Подсчитано, что в настоящее время ежегодная сумма потерь, связанных с низким техническим состоянием, доходит до 1,5 трлн рублей. Если не принимать меры по изменению ситуации, к 2010 г. эта цифра, по прогнозам Минтранса, дойдет до 1,675 трлн руб., к 2015 г. – превысит 2 трлн руб., а к 2025 г. может зашкалить за 3 трлн руб. Поэтому задача повышения эксплуатационно-экологического уровня имеющихся дорог ставится остро, как никогда ранее. Об этом свидетельствует увеличивающиеся ассигнования государственного бюджета на проблемы дорожной отрасли. Сегодня соответствует нормативным требованиям только 37 % федеральных и 24 % территориальных автомобильных дорог.

Постоянный рост объемов вывозки лесоматериалов вызывает увеличение нагрузок на дорожные одежды. В связи с тем, что в настоящее время их расчет ведется по среднегодовой суточной интенсивности движения без учета нагрузок, во время вывозки наблюдается повышенный износ, разрушения и преждевременный выход из строя участков дорог. В значительной степени это связано с перегрузкой автомобилей и автопоездов. Перегрузку определяют следующие факторы:

- материальная заинтересованность водителей максимально использовать возможности автотранспорта;
- равнинный рельеф местности, позволяющий максимально использовать тяговые возможности автотранспорта.

Внедрение разработанных рекомендаций по ремонтным работам позволит исключить потери лесозаготовительного производства.

Обобщенный показатель эффективности ремонтных работ (Π_3) определяется по формуле:

$$\Pi_{3} = \frac{T \cdot W \cdot L \cdot 0.01 \cdot S_{\mathcal{P}}^{3} \left[\Pi_{cn}^{0} - \Pi_{cn}^{1} \right]}{\mathcal{A}},$$
(1)

где Т – период, за который определяется показатель эффективности в сутках;

W – объем перевозок за сутки, т;

L – протяженность рассматриваемого участка дороги, км;

 $S_{p}^{\ 9}$ – доля себестоимости перевозок, зависимая от эффективности ремонтных работ, в эталонных дорожных условиях, руб/ткм;

 $\Pi_{\it en}^0$ — показатель себестоимости перевозок до проведения ремонтных работ;

 Π^1_{en} — показатель себестоимости перевозок после проведения ремонтных работ;

Д – затраты на дорожно-ремонтные работы, руб.

Имея обобщенный показатель эффективности ремонтных работ, определяют экономический эффект (Э) от выполнения ремонтных работ по зависимости

$$\mathfrak{I} = [R_p \cdot \Pi_3 - R_p]L, \tag{2}$$

где R_p – затраты на капитальный и средний ремонт, руб.

Для того чтобы определить экономический эффект от разрабатываемых рекомендаций по ремонтным работам используем зависимости (1) и (2) проведем расчет в следующей последовательности (при этом все расчеты будем заносить в табл. 1).

Определим показатель скорости движения (Π_{v})

- до ремонта

$$\Pi_{v}^{0} = \frac{V_{\Phi}}{V_{p}} \tag{3}$$

- после ремонта

$$\Pi_{\nu}^{1} = \frac{V_{\Phi}}{V_{\ni}}, \qquad (4)$$

где V_{φ} – фактическая скорость движения;

 V_{2} – возможная средняя скорость движения автомобилей в эталонных условиях.

Определяем показатель безопасности движения ($\Pi_{\rm 5}$) используя сведения о показателях коэффициентов аварийности на отдельных участках. Сведения о них заносим в табл. 1.

Определяем показатель прочности дорожной одежды (Π_{np})

- до проведения ремонта

$$\Pi_{np}^{0} = \frac{E_{y\Phi}}{E_{ymp}}, \qquad (5)$$

где $E_{y\varphi}$ – фактический модуль упругости, МПа;

 E_{vrp} – требуемый при данном движении модуль упругости, МПа;

Определяем показатели себестоимости перевозок

– до начала ремонтных работ ([¶] ^ℚ ^ℚ по зависимости

$$\Pi_{cu}^{0} = K_{v}^{0} \cdot K_{c}^{0} \cdot K_{u}^{0} \cdot K_{uy}^{0} \cdot K_{u}^{0}$$
(6)

– после ремонтных работ ($\Pi^{\mathbf{I}}_{\mathtt{qst}}$) по зависимости

$$\Pi_{cx}^{1} = K_{v}^{1} \cdot K_{6}^{1} \cdot K_{x}^{1} \cdot K_{xy}^{1} \cdot K_{x}^{1}, \qquad (7)$$

где \mathbb{K}_{np}^0 – показатель прочности до ремонта;

 K_{np}^{1} – показатель прочности после ремонта;

 $K_{\rm M}^0$ — показатель непрерывности проезда до ремонтных работ;

 K_{N}^{1} — показатель непрерывности проезда после ремонтных работ, равен 1;

Определив разность показателей себестоимости перевозок и зная фактически затраты на ремонт 1 км участка, а также исходную среднесуточную интенсивность движения, используя зависимость (1) устанавливаем величину показателя эффективности (Π_9) и заносим в табл. 1. После чего по зависимости (2) определяем общий экономический эффект от выполнения ремонтных работ.

Качество лесовозных дорог (их капиталоемкость) регулируется спросом на древесину – уровнем закупочных цен на круглые лесоматериалы. При низких ценах лесозаготовитель вынужден экономить на

дорогах, применяя наиболее «дешевые» их типы. Из-за сложных дорожных условий повышается себестоимость заготовки [2].

Таблица 1 Показатели для расчета экономической эффективности ремонтных работ на дорогах Красноларского края

краснодарского крал												
Место ремонтных работ от-до км+м	Длина участка, км	Фактическая скорость движения, км/ч	Показатели для расчета экономической эффективности									
			$\frac{\Pi_{\mathbf{v}}}{K_{\mathbf{v}}}$		$\frac{\Pi_6}{K_6}$		$\frac{K^{ab}}{\Pi^{ab}}$		$\frac{\Pi_{H}}{K_{H}}$	Пеп		П,
			$\frac{\Pi_v^0}{K_v^0}$	$\frac{\Pi^1_{v}}{\kappa^1_{v}}$	$\frac{\Pi_{6}^{0}}{K_{6}^{0}}$	$\frac{\pi_{6}^{1}}{\kappa_{6}^{1}}$	$\frac{\Pi_{np}^{0}}{K_{np}^{0}}$	$\frac{\Pi_{mp}^{l}}{K_{mp}^{l}}$	$\frac{\Pi_{H}^{0}}{K_{H}^{0}}$	π_{en}^0	π^1_{en}	
21–22	1	57	0,96 1,05	0,96 1,01	6,6 1,01	5,0 1,01	0,26 1,04	1,0 1,0	0,70 1,03	1,09	1,01	0,698
24–25	2	57	0,96 1,01	0,96 1,01	2,2 1,00	2,0 1,00	0,73 1,03	1,0 1,0	0,92 1,01	1,05	1,01	0,699
26+500- 100	4,5	54	9,0 1,01	0,96 1,01	17,0 1,02	5,0 1,01	0,87 1,02	1,0 1,0	0,95 1,00	1,05	1,01	0,557
32+800- 142	3,2	54	9,0 1,01	9,96 1,01	9,0 1,01	5,0 1,01	0,70 1,03	1,0 1,0	0,8 1,02	1,07	1,01	1,012

При развитой транспортной инфраструктуре может сокращаться общее расстояние от лесосек до потребителя, но главное — существенно сокращается расстояние вывозки по лесовозным дорогам (снижается стоимость заготовки древесины), вследствие чего снижаются суммарные транспортные расходы. Государственная поддержка лесного бизнеса должна выражаться в первую очередь в создании эффективной транспортной инфраструктуры, повышении эксплуатационного качества дорог, обеспечивающих условия для максимального и эффективного освоения национальных лесных ресурсов.

Список литературы

- 1. Смирнов, М.Ю. Повышение эффективности вывозки лесоматериалов автопоездами [Текст] : научное издание / М.Ю. Смирнов. Йошкар-Ола : МарГТУ, 2003. 280 с.
 - 2. Судьба лесовозных дорог. «Лесная Россия», Москва. №5-6, 2008. 62 с.

Feasibility Study of Recommendations on Logging Losses Reduction E.V. Kondrashova, T.V. Skvortcova, S.V. Merkulov,

R.A. Gnilomedov

Voronezh State Timber Academ; Voronezh State Architecture and Construction University, Voronezh

Key words and phrases: covering reconditioning; economic effect; indexes of road safety, traffic handling cost, traffic speed, covering of roadway durability and repair work efficiency.

Abstract: The paper studies recommendations enabling to eliminate the timber production losses due to transport economy. The economic effect of the proposals introduction is calculated on the example of Krasnodar roads.