ВЛИЯНИЕ ПОДВУЛКАНИЗАЦИИ НА ОТНОСИТЕЛЬНОЕ ИЗМЕНЕНИЕ РАЗМЕРОВ ДЛИННОМЕРНЫХ РЕЗИНОТЕХНИЧЕСКИХ ЗАГОТОВОК

М.В. Соколов, А.С. Клинков, П.С. Беляев, В.Г. Однолько

ГОУ ВПО «Тамбовский государственный технический университет», г. Тамбов

Рецензент С.И. Дворецкий

Ключевые слова и фразы: относительное изменение размеров экструдата; резиновая смесь; степень подвулканизации.

Аннотация: Рассмотрены теоретические основы определения критического значения степени подвулканизации длинномерных резинотехнических заготовок с помощью измерительного устройства.

Существует проблема ухудшения физико-механических показателей экструдата и брака изделий за счет термодеструкции (подвулканизации) и изменения размеров их поперечного сечения при изменении режимных параметров процесса.

Исследования показали, что подвулканизация экструдата в основном возникает в формующих каналах экструзионных головок [1]. В качестве параметра, описывающего подвулканизацию резиновых смесей, принимали критерий Бейли ЈВ [2] или степень подвулканизации, который рассчитывался по математической модели [1] с помощью программы [3].

В работе рассмотрены теоретические основы определения критического значения степени подвулканизации длинномерных резинотехнических заготовок с помощью измерительного устройства выполненного на базе МЧХ-32/10 [4].

С целью оценки влияния подвулканизации на изменение размеров экструдата проведены экспериментальные исследования, то есть для различных заданных значений угловой скорости червяка $\omega = (0,2...7,85) \text{ c}^{-1}$, что соответствует производительности $Q = (0,02...0,1) \cdot 10^{-5} \text{ m}^3/\text{c}$, перепада

Соколов М.В. – кандидат технических наук, доцент кафедры «Переработка полимеров и упаковочное производство» ТамбГТУ; Клинков А.С. – кандидат технических наук, профессор кафедры «Переработка полимеров и упаковочное производство» ТамбГТУ; Беляев П.С. – доктор технических наук, профессор, заведующий кафедрой «Переработка полимеров и упаковочное производство» ТамбГТУ; Однолько В.Г. – кандидат технических наук, профессор, декан заочного отделения ТамбГТУ, г. Тамбов.

давления по длине червяка ΔP , перепада температуры по длине червяка ΔT и соответствующей геометрии шнека.

В процессе эксперимента отбирались пробы экструдата, и снимались кривые его подвулканизации, аналитические уравнения которых входят в уравнение математической модели для расчета степени подвулканизации. Кривые подвулканизации (рис. 1) снимались в ЦЗЛ ОАО «АРТИ-Завод» на приборе «Monsanto», по стандартной методике (ISO 9000).

Из рис. 1 видно, что с увеличением производительности Q кривые скорчинга (2-5) стремятся к кривой, соответствующей недеформированному состоянию резиновой смеси (кривая I), так как уменьшается время пребывания резиновой смеси в цилиндре пластикации.

Сравнительный анализ кривых подвулканизации (см. рис. 1) до (кривая I) и после (кривая 5 при условии $JB \le 1$ %) процесса экструзии показал их расхождение не более 7 %, что свидетельствует о правильности выбора ограничения на величину критерия подвулканизации JB.

Такая же тенденция изменения кривых скорчинга наблюдалась для резиновых смесей шифров ИРП-6713, ИРП-3826, 46ПРФ-26.

На рис. 2, 3 построены зависимости на примере экструзии цилиндрических заготовок из резиновой смеси шифра НО-68НТА при следующих параметрах: температура материального цилиндра и шнека $T_{\rm u}=85...100~{\rm °C}$; температура резиновой смеси на входе в винтовой канал $T_{\rm cm.bx}=50~{\rm °C}$; температура теплоносителя в ванне $T_{\rm B}=105~{\rm °C}$; реологические константы (при $T_{\rm cm.bx})$ $m_0=600~000~{\rm Пa}\cdot{\rm c}^n$, n=0,2; теплофизические параметры при средней температуре резиновой смеси $T_{\rm cm}=80~{\rm °C}$; теплоемкость $c=2100~{\rm Дж/(kr\cdot °C)}$, плотность $\rho=1200~{\rm kr/m}^3$, теплопроводность $\lambda=0,22~{\rm Br/(m\cdot °C)}$; коэффициент теплоотдачи от резиновой смеси к стенке материального цилиндра $\alpha=100~{\rm Br/(m^2\cdot °C)}$.

Для расчета степени подвулканизации экструдата в каналах формующей головки разработаны расчетные уравнения для определения в них температуры резиновых смесей [1].

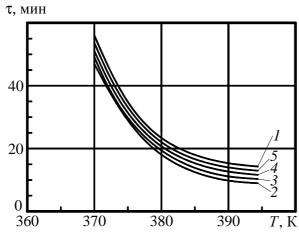


Рис. 1. Кривые подвулканизации при различной производительности для резиновой смеси шифра HO-68HTA:

I – до экструзии; $2-Q=0.04\cdot 10^{-5}$ м 3 /с; $3-Q=0.06\cdot 10^{-5}$ м 3 /с; $4-Q=0.08\cdot 10^{-5}$ м 3 /с; $5-Q=0.1\cdot 10^{-5}$ м 3 /с – после экструзии

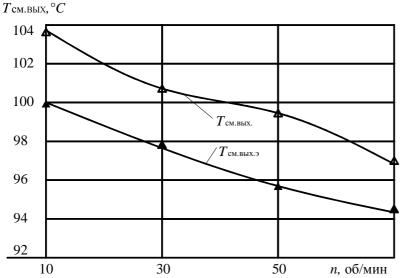


Рис. 2. Зависимость температуры экструдата на выходе из экструзионной головки (экспериментальное $T_{\rm cm, вых.}$) и расчетное $T_{\rm cm, вых.}$ значения) от частоты вращения n при диаметре выходного канала мундштука $d_{\rm m}=0{,}0082$ м и длине $l=0{,}097$ м

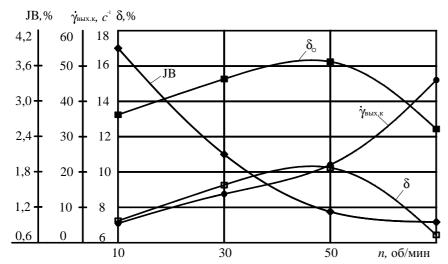


Рис. 3. Зависимости относительного изменения диаметра экструдата до δ_0 и после δ его охлаждения, скорости сдвига в выходном канале экструзионной головки $\dot{\gamma}_{\rm вых.к}$, критерия подвулканизации ЈВ от частоты вращения n при диаметре выходного канала мундштука $d_{\rm M}=0{,}0082$ м и длине $l=0{,}097$ м

Сравнительный анализ (см. рис. 2) экспериментальных и рассчитанных по уравнениям [1] значений температуры экструдата на выходе из формующей головки показал их расхождение не более 4 %, что свидетельствует об адекватности расчетных уравнений, описывающих температурное поле по длине формующих каналов экструзионной головки.

Относительное изменение диаметра экструдата до δ_0 (см. рис. 3) и после δ охлаждения возрастает в пределах n=10...50 об/мин при уменьшении степени подвулканизации JB = 4...1 % и убывает в пределах n=50...

70 об/мин при почти постоянном значении степени подвулканизации $JB \approx 1$ %. Это можно объяснить тем, что наряду с увеличением напряжения сдвига за счет увеличения скорости сдвига $\dot{\gamma}_{\text{вых.к}}$ (см. рис. 3) действуют еще и температурные напряжения, а при уменьшении температуры (см. рис. 2) увеличивается вязкость перерабатываемого материала, процесс релаксации замедляется, что приводит к увеличению относительного изменения диаметра экструдата δ .

Также видно, что относительное изменение диаметра экструдата δ после охлаждения составляет 50...65 % от общего значения относительного изменения диаметра.

Как видно из рис. 3 при увеличении частоты вращения шнека n с 10 до 50 об/мин происходит уменьшение подвулканизации ЈВ (с 4 до 1 %) при сопровождающемся уменьшении температуры выхода экструдата с 100 до 96 °C (см. рис. 2) и незначительном увеличении относительного изменения размеров экструдата δ после охлаждения с 7 до 11 %. При дальнейшем увеличении частоты вращения шнека n с 50 до 70 об/мин подвулканизация ЈВ стабилизируется (1 %) при сопровождающемся незначительном уменьшении температуры выхода экструдата с 96 до 95 °C и незначительном уменьшении относительного изменения размеров экструдата δ после охлаждения с 11 до 7 %.

Таким образом, можно сделать вывод, что наличие подвулканизации около $1\,\%$ в резиновой смеси шифра HO-68HTA не оказывает значительного влияния на изменение размеров экструдата δ , а уменьшение температуры выхода экструдата приводит к его увеличению, за счет увеличения вязкости перерабатываемого материала.

Так же определены критические значения степени подвулканизации для резиновых смесей шифров ИРП-6713 (JB = 1 %), ИРП-3826 (JB = 1,5 %), $46\Pi P\Phi$ -26 (JB = 1,5 %).

Список литературы

- 1. Проектирование экструзионных машин с учетом качества резинотехнических изделий : монография / М.В. Соколов, А.С. Клинков, П.С. Беляев, В.Г. Однолько. М. : Машиностроение-1, 2007. 292 с.
- 2. Бекин, Н.Г. Расчет технологических параметров и оборудования для переработки резиновых смесей в изделия / Н.Г. Бекин. Л. : Химия, 1987.-272 с.
- 3. Свидетельство № 2003611833 о регистрации программы для ЭВМ. Расчет оптимальных технологических и конструктивных параметров экструзии резиновых смесей с учетом минимизации технологической мощности и получения качественного экструдата (Оптимизация экструзионного оборудования) / Соколов М.В., Клинков А.С., Кочетов В.И., Беляев П.С. (РФ); опубл. 04.08.2003.
- 4. Соколов, М.В. Измерительное устройство для определения рациональных значений суммарного сдвига и критерия подвулканизации при производстве длинномерных резинотехнических изделий заданного качества / М.В. Соколов, А.С. Клинков, П.С. Беляев // Вопр. современ. науки и практики. Ун-т им. В.И. Вернадского. Серия: Технические науки. 2007. Т. 2, №4(10). С. 195—202.

- 5. Соколов, М.В. Измерительное устройство для определения рациональных значений суммарного сдвига и критерия подвулканизации при производстве длинномерных резинотехнических изделий заданного качества / М.В. Соколов, А.С. Клинков, П.С. Беляев // Вопросы современной науки и практики. Университет им. В.И. Вернадского. − 2007. − Т. 2, № 4(10). − С. 195–201.
- 6. Соколов М.В. Энергосберегающая технология производства длинномерных резинотехнических изделий заданного качества / М.В. Соколов, А.С. Клинков, П.С. Беляев, В.Г. Однолько // Вопросы современной науки и практики. Университет им. В.И. Вернадского. 2008. Т. 2, № 1(11). С. 99—103.

Effect of Sub-Vulcanization on Relative Shift in Size of Long-Sized Rubber Parts

M.V. Sokolov, A.S. Klinkov, P.S. Belyaev, V.G. Odnolko

Tambov State Technical University, Tambov

Key words and phrases: relative shift in extrudate; rubber mixture; degree of sub-vulcanization.

Abstract: The paper deals with theoretical grounds of determining the critical value of the degree of sub-vulcanization of long-sized rubber parts by measuring device.

© М.В. Соколов, А.С. Клинков, П.С. Беляев, В.Г. Однолько, 2008